Cogongrass Control Update:

Influence of morphology on response to glyphosate

Nancy J. Loewenstein School of Forestry and Wildlife Sciences Auburn University

Stephen Enloe - University of Florida Rima Lucardi - USDA Forest Service Dwight Lauer - Silvic Analytic

- Glyphosate (Accord, Roundup, Glypro, ...)
 - 3-4 lb ai/A broadcast
 - 2-5% v/v spot
- Imazapyr (Arsenal, Arsenal AC, Chopper Gen 2, ...)
 - 0.5-1 lb ai/A broadcast

when using glyphosate.

Glyphosate + Imazapyr

Glyphosate (May and October each year) **Cogongrass can be eradicated on individual sites, but ... **Some sites are easier to control than others, especially

Objective

To examine the role of cogongrass morphology in response to glyphosate treatment.

Study Outline

- •Cogongrass populations from across the Southeast
- •Grown in greenhouse
- Response to different rates of glyphosate
- Evaluate results in light of morphology (phenotype) and genetics

Morphological differences in cogongrass ...

... above and below ground.

Materials and Methods

55 different populations, grown in stock pots at AU greenhouse

- Cogongrass rhizomes were fragmented into 5-6 inch cuttings
- Two cuttings per 6" pot containing standard potting media (n=36)
- Watered regularly
- Two greenhouses in Florida, one in Auburn, both with natural light

Plants grown in the greenhouse for 6 months

Auburn

Florida

At 6 months, plants were well established.

Above ground

... and below.

Pre-treatment data collection

- Number of tillers
- Maximum leaf height and width
- Leaf canopy cover
- Total leaf area
- Shoot biomass
- Root/rhizome biomass

Treatments

- Control untreated (oX)
- Glyphosate at 1.7 kg a.i. per hectare (1X)*
- Glyphosate at 3.4 kg a.i. per hectare (2X)

Post-treatment data collection

- Shoot biomass at 30 DAT
- Shoot and root biomass at 60 DAT

Plant Morphology

Cluster analysis

- All characteristics high
- All characteristics average
- Low shoot, others average
- All characteristics low

Conclusions

- Both glyphosate rates were effective in controlling all cogongrass morphological clusters in both Florida greenhouses.
- Glyphosate was not as effective on plants that were larger at time of treatment (AU greenhouse).
- The 2X treatment did not improve control.
- Still a lot of questions

Funding: USDA Forest Service Cooperative Agreement with Dr. Rima Lucardi

Invasive Plant Listing

- Still working on ASTM standard for invasive plant listing.
- North Carolina Invasive Plant Council (Tony Koop with APHIS) is starting work on a status assessment/evaluation tool for NCIPC (and others) to use for creating/revising lists.
 - A technical tool, probably without the procedural aspects of the ASTM standard.

